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The aim of this study is to develop a copula-based ensemble simulation method for analyzing
the uncertainty and adjusting the bias of two high resolution satellite precipitation products
(PERSIANN and TMPA-3B42). First, a set of sixty daily rainfall events that each of them occurs
concurrently over twenty 0.25° × 0.25° pixels (corresponding to both PERSIANN and TMPA
spatial resolution) is determined to perform the simulations and validations. Next, for a
number of fifty-four out of sixty (90%) selected events, the differences between rain gauge
measurements as reference surface rainfall data and satellite rainfall estimates (SREs) are
considered and termed as observed biases. Then, a multivariate Gaussian copula constructed
from the multivariate normal distribution is fitted to the observed biases. Afterward, the
copula is employed to generate multiple bias fields randomly based on the observed biases. In
fact, copula is invariant to monotonic transformations of random variables and thus the
generated bias fields have the same spatial dependence structure as that of the observed
biases. Finally, the simulated biases are imposed over the original satellite rainfall estimates in
order to obtain an ensemble of bias-adjusted rainfall realizations of satellite estimates. The
study area selected for the implementation of the proposed methodology is a region in the
southwestern part of Iran. The reliability and performance of the developed model in regard to
bias correction of SREs are examined for a number of six out of those sixty (10%) daily rainfall
events. Note that these six selected events have not participated in the steps of bias generation.
In addition, three statistical indices including bias, root mean square error (RMSE), and
correlation coefficient (CC) are used to evaluate the model. The results indicate that RMSE is
improved by 35.42% and 36.66%, CC by 17.24% and 14.89%, and bias by 88.41% and 64.10% for
bias-adjusted PERSIANN and TMPA-3B42 estimates, respectively.
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1. Introduction

High resolution satellite rainfall estimates (SREs) provide
a useful source of data (i.e. uninterrupted and global
coverage) for hydrological applications and water resources
planning, particularly over developing regions in which
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ground-based observations are usually sparse or unevenly
distributed. However, using satellite products is subject to
error and uncertainty due to the indirect nature of their
estimates. On the other hand, reliable estimation of precip-
itation is essential for hydrologists, as the uncertainties
associated with rainfall estimates will propagate in hydro-
logic modeling predictions (Aghakouchak, 2010). Therefore,
in this study, the authors focus on the bias simulation and
adjustment of two widely used high resolution satellite
products (PERSIANN and TMPA-3B42) over a region in the
southwest of Iran.
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The evaluation of the accuracy of SREs has been carried out
at different spatial and temporal resolutions in several studies
in the last years (Tian et al., 2007; Hong et al., 2007; Su et al.,
2008; Li et al., 2009; AghaKouchak et al., 2009, 2012; Hirpa et
al., 2010; Dinku et al., 2010; Behrangi et al., 2011; Bitew and
Gebremichael, 2011; Yong et al., 2012). However, the applica-
bility of SREs in hydrologic predictions and water resources
management is limited, due to a lack of quantitative information
regarding the uncertainties of satellite precipitation estimates at
required spatial and temporal resolution (Sorooshian et al.,
2000).

One way to assess spatio-temporal uncertainties of
satellite precipitation products is to simulate an ensemble
of precipitation fields which consists of a large number of
realizations; each realization represents a possible rainfall
event (Aghakouchak, 2010). Hossain and Anagnostou
(2006) developed a two-dimensional satellite rainfall error
model (SREM2D) for simulating ensembles of satellite rain
fields. They characterized the joint spatial probability of
successful delineation of rainy and non-rainy areas using
Bernoulli trials of the uniform distribution with a correlated
structure generated based on Gaussian random fields. They
also generated random error fields of SREs by Monte Carlo
simulation of given realizations. Bellerby and Sun (2005)
proposed a methodology to quantify the uncertainty present
in high-resolution satellite precipitation estimates by generat-
ing probabilistic and ensemble representations of the mea-
sured precipitation field. Teo and Grimes (2007) described an
approach for estimating the uncertainty on satellite-based
rainfall values using ensemble generation of rainfall fields
based on the stochastic calibration. They obtained the correct
spatial correlation structure within each ensemble member by
the use of geostatistical sequential simulation. Hong et al.
(2006a,b) developed an uncertainty analysis framework to
quantify PERSIANN-CCS precipitation estimates error charac-
teristics into a range of discrete temporal (1, 3, 6, 12, and 24 h)
and spatial (0.04°, 0.12°, 0.24°, 0.48°, and 0.96°) scales. They
also generated ensemble members of precipitation data as
forcing input to a conceptual rainfall-runoff hydrologic model
using Monte Carlo simulation to examine the influence of
precipitation estimation error on the uncertainty of hydrolog-
ical response.

Note that in the aforementioned studies, the geostatistical
approaches and Monte Carlo simulation were used to generate
spatially correlated random fields and ensemble members of
precipitation estimation error. Compared with a single best
estimate, such ensemble-based models can provide more
accurate quantification of precipitation uncertainty; however,
geostatistical based methods (e.g. a simple variogram model or
a covariancematrix) have some limitations. For example in data
analysis by geostatistical models, the data should have three
features including dependency, stationarity, and Gaussian
distribution (Johnston, 2004). Also, in models like geostatistical
sequential simulation which uses classical families of multivar-
iate distributions such as bivariate normal, log-normal and
gamma, dependence structure between variables is not inde-
pendent on the choice of themarginal distributions (Genest and
Favre, 2007). Therefore, using such models may lead to
unrealistic simulations (Germann et al., 2006). Therefore, as an
alternative approach, copulas that are joint cumulative distri-
bution functions can be employed to describe the dependence
structure of variables as well as to model multivariate random
variables with different marginal distributions. In fact, describ-
ing the dependence structure independent of the marginal
distribution is one of themost attractive features of copulas (Joe,
1997; Nelsen, 2006; Aghakouchak, 2010).

In recent years, several studies in regard to applications of
different families of copula in hydrological and meteorolog-
ical processes have been reported by Grimaldi and Serinaldi
(2006), Renard and Lang (2007), Zhang and Singh (2007),
Evin and Favre (2008), Serinaldi (2009a,b), Wang et al.
(2010), Aghakouchak et al. (2010a,b,c), and Vandenberghe et
al. (2010). In this study, we assess the uncertainty and adjust
the bias of PERSIANN and TMPA-3B42 products using a
copula-based ensemble generation method. For this reason, a
multivariate Gaussian copula is employed to describe the
dependence structure and to simulate multivariate satellite
rainfall bias fields based on the observed biases of daily rainfall
events over twenty 0.25° × 0.25° pixels. It is pointed out that
the daily resolution of SREs is used in this paper because the
reference rain gauge data are based on the daily measurements.
Indeed, there doesn't exist a reliable set of sub-daily ground data
across the study area.

The approach presented here is similar to that of
Aghakouchak et al. (2010a,b,c) since it makes use of copula
technique to generate an ensemble of rainfall realizations.
However, in the proposedmodel by Aghakouchak et al. (2010a,
b,c), the intention was to use copula-based simulation of
multivariate error fields for radar rainfall estimates in order to
generate an ensemble of rainfall realizations, while the aim of
this study is to develop a bias correction model for satellite
precipitation estimates. For this purpose, multiple bias fields
are generated based on the observed biases of fifty-four daily
rainfall events over twenty 0.25° × 0.25° pixels. Then, the
generated biases are imposed over the original SREs in order to
simulate an ensemble of bias-adjusted rainfall realizations of
satellite estimates. To examine the reliability and performance
of the developed model, the generated biases are also imposed
over the six daily rainfall events which have not been involved
in the steps of bias simulation. It is noted that these six selected
events have occurred over the same pixels as those fifty-four
events. In addition, the model presented here uses an
uncertainty analysis technique (see Section 3.5) to select a
more accurate set of biases among the several randomly
generated sets which would result in better estimates.

It is worth pointing out that the 3B42 version of TMPA
products presents the bias reduction data of precipitation
estimates using the gauge data based on theGlobal Precipitation
Climatology Project (GPCP) monthly rain gauge analysis
(Rudolf, 1993). The gauge adjustment process involves aggre-
gating both the gauge and the 3-hourly 3B42 estimates to a
monthly scale and then applying the ratio of the 3B42/gauge
monthly totals to each 3-hourly time step (Habib et al., 2009).
However, several studies have reported the uncertainty associ-
ated with the TMPA-3B42 product over different regions (Jiang
et al., 2012; AghaKouchak et al., 2009, 2011; Habib et al., 2009;
Yong et al., 2012). Compared with TMPA-3B42 algorithm that
assumes the precipitation estimation error as a fixed ratio of rain
rates, the framework proposed based on the simulated
ensembles of SREs bias fields provides more realistic quantifi-
cation of uncertainties associatedwith different kinds of satellite
precipitation products (Hong et al., 2006a,b).
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The present work is organized as follows: Section 2
introduces the study area and data resources used; Section 3
describes the suggested methodology for adjusting the bias of
SREs; Section 4 details the results and discussion; and Section 5
presents the conclusions and recommendations.

2. Study area and data resources

2.1. Study area

Khuzestan Province (30°–33° latitude, 47.7°–50.5° longi-
tude) is one of the 31 provinces of Iran in the southwestern
part of country with a total area of 63,238 km2 (Fig. 1).
Khuzestan contains more than 30% of the total surface water
resources of the country, due to several prominent rivers
(Karun, Karkheh, Dez, Jarahi and Arvand Rud) which flow
over the entire territory of this province. On the other hand,
the geography of Khuzestan encompasses terrain ranging
from plains in the southern to mountains in the northern
parts of the province. The northern parts covered by Zagros
Mountains have temperate weather in the summer and cold
weather in the winter season. The type of precipitation in this
area with mountainous climate is orographic and the mean
annual precipitation is around 700 mm. However, in the
southern parts close to the Persian Gulf with mid-latitude, as
well as tropical humid climate, most precipitation appears to
be convective. Also, in this area with warm weather, the
mean annual rainfall is less than 250 mm. The central parts of
Khuzestan with semiarid climate are covered by steppe. Over
this area the average value of rainfall has been reported in the
range between 250 to 400 mm. In general, because of climate
conditions governing in Khuzestan, there are long-duration
and intense precipitation events across this region. Further-
more, overflowing great rivers after incessant heavy rain
leads to major floods over the Khuzestan. Therefore, high
resolution spatiotemporal information of rainfall as the most
important input variable into hydrologic models is essential
in order to simulate and analyze extreme events reliably.
However, the availability of a dense network of ground-based
rainfall measurements is relatively limited across the Khuzestan
province. Then, as a possible alternative, high resolution satellite
precipitation products can be employed in this area.

Khuzestan consists of around one hundred 0.25° ×
0.25° pixels (corresponding to those PERSIANN and TMPA
pixels); as well as there are eighty rain gauges across this
region. To determine the appropriate pixels for this study,
at the first step, forty pixels out of one hundred that each
of them contains at least one rain gauge are determined.
Then, a set of twenty pixels out of fortywith the largest number
of reference ground data associated with the daily rainfall
events during the study period (2003–2006) is selected
(Fig. 1c). It is noted that to perform the simulation and
validation fields, a number of sixty daily rainfall events are
selected, each of which is concurrent over all the twenty pixels.
Consequently, the analyses are implemented for the sixty daily
events over the twenty pixels in the study area.

2.2. Data resources

The true reference data set employed in the present work
is based on the daily rain gauge observations provided by
Iran Water Resources Management Co. (IWRM) (Fig. 1b). The
gauge observed rainfall datasets have been quality checked
and screened by IWRM prior to making it available. They
analyze the rainfall data by using a multivariate regression
method between adjacent rain gauges. Then, statistical tests
are conducted to check the data consistency. It is noted that the
quality assurance of rain gauge data is beyond the scope of this
research, and thus, is not addressed here. The interested
readers are referred to the publications discussed by Draper
and Smith (1998), You et al. (2007), and Mathes et al. (2008).

The required surface rainfall data are derived from forty rain
gauges distributed across the twenty pixels of the study area to
evaluate satellite precipitation products during the sixty rainy
days in the period from 22 November 2003 to 22 May 2006.
Note that all the sixty events occur in the winter and spring
which are the rainy seasons over Khuzestan. Hence, the study
period consists of eighteenmonths including six months of the
winter and spring seasons at each year (2003–2006).

It should be noted that the satellite-retrieved precipita-
tion is continuous and represents an areal rain rate at each
pixel, while the gauge observed rainfall is at a particular point
in a location. Therefore, to make comparisons between the
two sources, pixels where gauges are available are selected
across the study area. The areal reference rainfall over a pixel
size is considered the rainfall value measured by the rain
gauge located within that pixel. Also, for a pixel with two or
more rain gauges, the areal reference rainfall is obtained
based on the average value of those rain gauges located
within that pixel.

The satellite rainfall products used in this study are based
on Precipitation Estimation from Remote Sensing Information
using Artificial Neural Network (PERSIANN) (Sorooshian et al.,
2000) and Tropical Rainfall Measuring Mission (TRMM)
Multi-satellite Precipitation Analysis (TMPA) adjusted product
(3B42). The PERSIANN system uses neural network function
classification/approximation procedures to compute an esti-
mate of rainfall rate at each 0.25° × 0.25° pixel of the infrared
brightness temperature image provided by geostationary
satellites. An adaptive training feature facilitates updating of
the network parameters whenever independent estimates of
rainfall are available. The PERSIANN system was based on
geostationary infrared imagery and later extended to include
the use of both infrared and daytime visible imagery. Rainfall
products are available from 50°S to 50°N globally.

TMPA provides global precipitation estimates from a wide
variety of meteorological satellites (Huffman et al., 2010).
Indeed, the TMPA estimates are available in the form of two
products, a near real-time version (3B42RT) (about 6 h after
real time) covering the global latitude belt from 60°N to 60°S
and a gauge-adjusted post-real-time research version (3B42)
(approximately 10–15 days after the end of eachmonth)within
the global latitude belt ranging between 50°N and 50°S. Both
3B42RT and 3B42 have 3-hour temporal and 0.25° × 0.25°
spatial resolution. The 3B42RT uses the TRMM Combined
Instrument (TCI) dataset, which includes the TRMM precipita-
tion radar (PR) andTRMMMicrowave Imager (TMI), to calibrate
precipitation estimates derived from available Low Earth Orbit
(LEO) microwave (MW) radiometers. The 3B42RT then merges
all of the estimates at 3-hour intervals; and the gaps in the
analyses are filled using Geostationary Earth Orbit (GEO)
infrared (IR) data regionally calibrated to the merged MW
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product. The 3B42 adjusts the monthly accumulations of the
3-hour fields from 3B42RT based on a monthly gauge analysis,
including the Global Precipitation Climatology Project (GPCP)
Fig. 1. Study area: (a) Khuzestan Province in the southwest of Iran, (b) rain gauges
study over Khuzestan Province.
(Gebremichael et al., 2005) 1° × 1° monthly rain gauge
analysis and the Climate Assessment and Monitoring
System (CAMS) 5° × 5° monthly rain gauge analysis (Jiang
and satellite pixels over Khuzestan Province, (c) selected satellite pixels for

image of Fig.�1
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et al., 2012). Note that the daily satellite rainfall data
employed in the current work are computed by aggregating
3-hour temporal resolution data over 24-h for both PERSIANN
and TMPA-3B42 products.

It is worth pointing out that the SREs at any given point
are dependent on a number of factors, some of which are
independent of geography. For example, TMPA-3B42RT
employs multiple microwave sensor combinations with gaps
filledwith IR-based estimates, while PERSIANN ismainly based
on one input data set (Infrared (IR) brightness temperature
calibrated with microwave observations). Thus, PERSIANN is
expected to have more homogeneous errors than TMPA-
3B42RT (Aghakouchak et al., 2012).

3. Methodology

In the presented model, at first, the multiple uncertainty
fields associated with satellite rainfall estimates are simulat-
ed using copula-based random generation of observed biases.
Then, in order to obtain an ensemble of bias-adjusted rainfall
realizations of satellite estimates, the simulated multiple
uncertainty fields are imposed over the original satellite
estimates. Fig. 2 provides a general overview of the proposed
model; however, all the steps of simulation are presented
briefly as follows:

1) A number of sixty daily rainfall events are selected, each of
which is concurrent over the twenty 0.25° × 0.25° pixels.
All the sixty events show a positive value of rain rate
according to the rain gauge observations. It is noted that
the fifty-four out of sixty (90%) events in all the twenty
pixels are employed in order to simulate the ensembles of
bias fields and a number of six events (10%) are left to
examine the reliability of the simulated model.

2) The difference between rain gauge measurements as
reference surface rainfall data and SRE at each pixel is
considered and termed as observed bias. The value of
observed bias is obtained for each event at each selected
pixel separately. Now, we have a 54-by-20 matrix of
observed bias values.

3) The best probability distribution function (PDF) is fitted
to the observed bias values of each pixel; subsequently,
the cumulative distribution functions (CDFs) of the
biases are computed for each pixel (a 54-by-20 matrix
of values in the open interval (0,1) for twenty pixels).

4) The n-dimensional multivariate Gaussian copula is fitted
to the computed CDF from the previous step. Since
the bias at each pixel is assumed as a variable, the
dimensionality (n) of the Gaussian copula for the twenty
pixels used in this study is twenty. Indeed, copula can
model the dependencies by describing the joint multi-
variate distribution; hence, the spatial dependence
structure of bias values among different pixels can be
modeled by copula.

5) Gaussian copula is employed to generate an ensemble of
CDFs randomly based on the observed CDFs.

6) Ensembles of bias fields that are equal to inverse values
of randomly generated CDFs are obtained. Using copula,
one can simulate random variables (here random biases
fromdifferent pixels)with the sameprobability distribution
as that of the input data (here observed biases from
different pixels), while preserving the dependence
structure of the variables (Nelsen, 2006).

7) The outlier data of the randomly generated ensembles of
biases are detected and removed.

8) The simulated multiple random bias fields are imposed
over the original satellite estimates of an event in order
to obtain an ensemble of bias-adjusted realizations of
SREs for that event.

9) An uncertainty analysis technique (see Section 3.5) is
employed in order tomeasure the strength of the simulated
ensembles with respect to uncertainty prediction.

10) As mentioned before, a number of six daily events which
have not participated in the ensembles simulation of
bias fields are employed to examine the reliability and
performance of the developed model. Furthermore, the
simulated realizations are evaluated using three statis-
tical indices including bias, root mean square error
(RMSE), and correlation coefficient (CC).

Further explanations of the above-mentioned steps are
discussed in the following sections.

3.1. Evaluation of SREs bias

The bias of SREs is calculated by comparing the rainfall
estimates derived from the satellite algorithms (PERSIANN and
TMPA-3B42) with the rain gauge observations as reference
data. The evaluation is conducted over a domain including the
twenty 0.25° × 0.25° pixels. The required statistical indices to
evaluate SREs are computed at each selected pixel by Eqs. (1) to
(4).
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Where PSi and POi
, respectively, are the values of SRE and

rain gauge observation for the ith event, N is the number of
daily events, PS and PO, respectively, are the average value of
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Fig. 2. Flowchart of research procedure.

150 S. Moazami et al. / Atmospheric Research 137 (2014) 145–166
SREs and rain gauge observations for N daily events over
each pixel.

3.2. General concept of copula

Copulas are joint cumulative distribution functions that
describe dependencies among variables independent of their
marginal (Joe, 1997; Nelsen, 2006). Consider p uniform
u(0,1) random dependence variables U1, …, Up. The relation-
ship between these random variables is defined through their
joint distribution function as follows:

C u1;…;up

� �
¼ Pr U1≤u1;…;Up≤up

� �
: ð5Þ

Function C is called a copula. To complete the definition, let
(X1, …,Xp) indicate a set of n random variables and (xi, …,xp) a
realization of it. Then copula is a function that links the
multivariate distribution F(x1,…,xp) to its univariate marginals
FXi xið Þ. Sklar (1959) demonstrated that:

C FX1
x1ð Þ;…; FXp

xp
� �� �

¼ F x1;…; xp
� �

ð6Þ

C : 0;1½ �n→ 0;1½ �: ð7Þ

In the copula model defined in Eq. (6), it is possible to
integrate different families of probability distributions for
each outcome. This is the main advantage of this approach
compared to standard multivariate models used in practice
(Favre et al., 2004). In addition, copula can preserve the
dependencies among variables that are described with a
correlation n-by-nmatrix where n is the number of variables.
Fig. 3 illustrates the concept of copula schematically.

3.2.1. Gaussian copula
Gaussian copula as a member of the Elliptical copula is the

most commonly used copula family, especially to model
dependence structures. The key advantage of Gaussian copula
is that one can specify different levels of correlation between
the marginals. In addition, it is practically manageable and
simple (Fang, 2012). This copula uses a symmetric and positive
definite matrix in order to model dependence. The elements of
this matrix can be interpreted as dependence measures
between couples of variables, leading to an analogy with the
correlations used in the case of multivariate Gaussian distribu-
tions. This model is thus convenient when the number of
dimensions ismore than two or three (Renard and Lang, 2007).
Several studies also have highlighted the application of
Gaussian copula to describe the dependence between variables
in multivariate distributions (Song, 2000; Renard and Lang,
2007; Madsen, 2009; Song et al., 2009; Aghakouchak et al.,
2010a,b,c; Fang, 2012). However, since the Gaussian copula
does not have upper or lower tail dependence, it may not be a
suitable choice for modeling the dependencies of extremes
(Schmidt, 2005; Frahm et al, 2005; Schmidt and Stadtmuller,
2006; Serinaldi, 2009a,b; Aghakouchak, 2010). If tail depen-
dence is observed in the data, alternative copula families, for
instance the t-copula may be more appropriate. In principle, the
choice of the more suitable copula for modeling a data set is not
straightforward, especially if the data set is not informative
enough to provide relevant indications about the asymptotic
dependence properties (Renard and Lang, 2007). Consequently,
in this study, as a first attempt to quantify and adjust the
uncertainty associated with SREs over a developing region in
Iran with inadequately informative data set of observations, a
multivariate Gaussian copula that is relatively easy to handle is

image of Fig.�2
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employed to describe the dependence structures and to simulate
multivariate satellite rainfall bias fields. The n-dimensional
multivariate Gaussian copula is derived from the multivar-
iate normal distribution (Nelsen, 2006) and described with a
correlation matrix ρn × n (n is the number of variables) as
follows:

Cn
ρ u1;…;unð Þ ¼ Fnρ F−1 u1ð Þ;…; F−1 unð Þ

h i
ð8Þ

Where ui is the ith random vector and Fρ
n is multivariate

standard Gaussian distribution function whose density
function is:

c u1;…;unð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ρð Þ

p exp −1
2
y uð Þ′ ρ−1−I

� �
y uð Þ

� �
ð9Þ

Where y(ui) = F−1(ui), det is determinant, and ! is transpose
operation.

3.3. Copula-based simulation

Let Cn be the copula of a multivariate n-dimensional
distribution H ≡ (H1, …,Hn) where H1, …, Hn are the
marginal distributions. In order to obtain a simulated field
of x ≡ (x1, …,xn) with marginals of H1, …, Hn, the following
three steps are required:

1) Estimate the parameter of the copula Cn.
2) Simulate uniform random variables u(u1, …,un) using the

copula Cn.
3) Transform the univariate marginals to H1, …, Hn using

Sklar's theorem (Sklar, 1959): xi = Hi
−1(ui).

It is noted thatH1,…,Hn do not necessarily need to have the
same distribution family (Aghakouchak, 2010). As mentioned
previously, since copula is invariant to monotonic transforma-
tions of the variables, the simulated random variableswill have
the same spatial dependence structure as that of input data.
This is one of the main advantages of copula in the simulation
of spatially dependent random fields. In the present study, the
copula parameter is estimated based on the observed biases at
each pixel.
3.4. Simulation of an ensemble of bias-adjusted rainfall realizations

In this research, as mentioned before, the observed biases
of fifty-four daily rainfall events over twenty pixels are
employed as input data to copula-based model. The bias at
each pixel is considered as a variable, and thus a multivariate
twenty-dimensional Gaussian copula for twenty pixels is
implemented in order to generate multiple random bias fields.
The marginal distribution of each variable is constructed based
on a parametric approximation which uses Anderson–Darling
goodness-of-fit test in order to fit the best probability
distribution function (PDF) to each variable. This criterion has
demonstrated good skills in hydrological applications (Laio,
2004; Laio et al., 2009; Di Baldassarre et al., 2009). Also, the
parameters of each distribution are obtained by using Maxi-
mum Likelihood Estimation (MLE) method. The specific PDF
associated with the observed biases at each pixel and the
related values of parameters are provided in Appendix A.

The correlation parameter of multivariate Gaussian cop-
ula is estimated based on the observed biases as follows:

(1) Estimate the marginal cumulative distribution func-
tions as described before.

(2) Generate Gaussian values by applying the inverse of
the normal distribution to the empirical distribution
functions.

(3) Compute the linear correlationmatrix of the transformed
data (Cherubini et al., 2004).

Using multivariate Gaussian copula, a set of one thousand
members of bias fields is generated randomly for each pixel.
Then, the outlier data are removed from the generated biases.
The outlier data are detected based on the statistical methods
for multivariate outlier detection. These methods often
indicate the outliers as those data that are located relatively
far from the center of the data distribution. Several distance
measures can be implemented for such a task. In this study
the Mahalanobis distance as a well-known criterion for the
detection of multivariate outliers is used. The Mahalanobis
distance depends on estimated parameters of the multivar-
iate distribution (Ben-Gal, 2005). Since the focus of this study
is on the performance of the copula-based bias adjustment
model, the details of outlier detection procedure are not
included here. The interested readers are referred to the
original publications discussed by Werner (2003), Hodge

image of Fig.�3
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and Austin (2004), Ben-Gal (2005), and Filzmoser (2005).
After the outliers were detected and removed, the generated
biases are imposed on the original satellite rainfall estimate
(hereafter OSRE that refers to rainfall estimate by satellite
products (PERSIANN and TMPA-3B42) before any adjustment
of bias through the developed model in the current study) in
order to obtain an ensemble of bias-adjusted rainfall realizations
of satellite estimate (hereafter BASRE that refers to bias-
adjusted satellite rainfall estimation products using developed
model in this study) at each pixel.

Eq. (10) describes the general formulation of the presented
method:

PBASREi
¼ POSREi

þ Biasi ð10Þ

Where PBASREi is an ensemble of bias-adjusted satellite
rainfall realizations at ith pixel, POSREi is the OSRE at ith pixel,
and Biasi is the randomly generated bias fields based on the
fifty-four observed biases (POi

−PSi , see Eq. (1)) at ith pixel. It
is pointing out that two types of error models including the
additive error (Bias) model and the multiplicative error
(Mbias) model are commonly used for the study of
precipitation measurements. Many studies of satellite-based
precipitation data products have used the additive error model

(Bias ¼ 1
N∑

N

i¼1
POi

−PSi

� �
(Shrestha, 2011)) (Ebert et al., 2007;

Habib et al., 2009; Roca et al., 2010; Aghakouchak et al., 2012),
while other studies such as Hossain and Anagnostou (2006),
Ciach et al. (2007), and Villarini et al. (2009) have used the

multiplicative model (Mbias ¼
1
N∑

N
i¼1PSi

1
N∑

N
i¼1POi

(Shrestha, 2011)) to

quantify or simulate errors in radar- or satellite-based
measurements. In fact, the use of different error models leads
to different definitions and calculations of uncertainties (Tian
et al., 2013). In the current study the additive bias model is
employed to simulate biases of satellite-based rainfall esti-
mates (the rainfall uncertainty is assumed to be an additive
term). Note that in the framework proposed here, for a single
“hit” (both rain gauge and satellite report positive rainfall
values) event, one can correct the bias value by using both the
additive and multiplicative models. However, for a single
“miss” (rain gauge reports positive rainfall value,while satellite
reports zero value) event, using the multiplicative model
results in an indeterminate form (0/0) of bias-adjusted field.
Therefore, in the case of “miss” event, the additive model may
lead tomore accurate estimation of bias-adjusted rainfall value.
It should be noted that in this study, all the selected daily
events have positive values of observed rainfall; however, the
satellite data can be either positive or zero. Also, if the rainfall
value becomes negative after bias adjustment, it will be set to
zero.

3.5. Calibration and uncertainty analysis procedure

In this study an ensemble approach is used to describe the
uncertainty associated with BASRE. The output uncertainty is
quantified by the 80 percentage prediction uncertainty band
(80PPU) calculated at the 10% lower and 90% upper limit
levels of the simulated ensemble. The 80PPU band is used
here, because we expect that the observed data fall within
this band and not consider 20% of the inappropriate
simulations. It is noted that in the several literatures
(Abbaspour et al., 2004, 2007; Schuol et al., 2008; Yang et
al., 2008) the 95PPU band calculated at the 2.5% lower and
97.5% upper limit levels of the output variables was used;
however, in our case after a trade-off between different
percentages, the 80PPU was selected as an appropriate band.

In stochastic simulations that predicted output is given by
a prediction uncertainty band two different indices including
P-factor and R-factor can be used to compare observations
with simulations (Abbaspour et al., 2007). In the present
research, P-factor and R-factor are computed in order to
gauge the strength of the simulated ensembles with respect
to uncertainty prediction. Here, the P-factor is the percentage
of pixels bracketed by the 80PPU band. For example, the
P-factor of 50% indicates that the 80PPU band of simulated
ensemble brackets the observed values of ten pixels (here,
the total number of studied pixels is twenty). The maximum
value for the P-factor is 100% that ideally brackets all the
observed data in the 80PPU band. The R-factor is calculated as
the ratio between the average thickness of the 80PPU band
and the standard deviation of the observed data. It expresses
the width of the uncertainty interval and the smaller R-factor
implies that the simulations are closer to the observations.
Indeed, R-factor indicates the strength of the simulation and
ideally can be smaller than 1; however, in the practical
studies the reasonable value for R-factor is 1 that demon-
strates the simulated fields match best with the standard
deviation of observed data. The R-factor is calculated as:

R−factor ¼
1
n

Xn
i¼1

Yi;90%−Yi;10%

� �
σobs

Where Yi,90% and Yi,10% represent the upper and lower
boundary of the 80PPU at each pixel, n is the number of pixels
(here 20), and σobs stands for the standard deviation of the
observed rainfall value of a single daily event for all the
twenty pixels (Abbaspour et al., 2007).

The goodness of calibration and prediction uncertainty is
judged based on the closeness of the average value of P-factor
to 100% and R-factor to 1 (Schuol et al., 2008; Yang et al.,
2008). As a larger P-factor leads to a larger R-factor, often a
trade-off between the two must be sought.

It is noted that, both P and R factors are calculated for a
simulated ensemble of BASRE associated with a single daily
event. However, there are fifty-four daily events here as input
data to copula-based model; thus, after computing the values
of P-factor and R-factor for each simulated ensemble of a daily
event, one can obtain the average value of each factor for
fifty-four daily events. In the model presented here, the
above-mentioned steps are implemented for several sets of
randomly generated bias fields; consequently, for each set of
generated biases the average values of P-factor and R-factor for
fifty-four simulated ensembles are computed. Therefore, the
several pairs of averaged P and R factors are obtained. Then, an
appropriate set among the different sets of randomly generated
biases is selected based on the best values of both P and R
factors. In fact, the selected set can simulate an ensemble of
BASRE that has two features simultaneously: (Abbaspour et al.,
2007) The 80PPU band brackets most of the observed data
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(closer P-factor to 100%), and (AghaKouchak et al., 2009) the
average distance between the upper (at 90% level) and lower
(at 10% level) parts of the 80PPU is as small as permissible that
indicates a better correspondence between simulation and
observation fields (closer R-factor to 1).

4. Results and discussion

The main objective of this study is to develop a model for
adjusting biases of two widely-used SRE products over an
important region in Iran. However, before displaying any
analysis results of the proposed model, a brief evaluation of
both satellite precipitation products across the study area is
presented. The evaluation is implemented during a period of
three years (2003–2006) including six rainymonths (winter and
spring seasons) in each year over twenty 0.25° × 0.25° pixels.
Fig. 4, compares the time series of daily precipitation for both
SREs and rain gauge observations during the six rainy months
in each year of the three years studied period separately. In this
figure, the rainfall value for each day is the average value of
twenty pixels in that day (vertical axis). As seen in Fig. 4,
TMPA-3B42 demonstrates better estimates than PERSIANN. In
addition, three continuous statistical indices including RMSE,
CC, and RBias (Eqs. (2) to (4)) are computed in order to
evaluate both satellite rainfall products over the study area.
Also, in order to assess the rain detecting skill of SREs, two
categorical statistical indices (Wilks, 2006) including the
probability of detection (POD) and false alarm ratio (FAR) are
used (Eqs. (12) and (13)). The POD represents the ratio of the
correct identifications number of rainfall by satellite product to
the total number of rainfall occurrences observed by reference
data. FAR denotes the fraction of cases in which the satellite
records rainfall when the rain gauges do not. POD and FAR
range from 0 to 1, with 1 being a perfect POD while 0 being a
perfect FAR. In this section, both continuous and categorical
statistical indices are obtained based on the daily precipitations
during the eighteen months.

POD ¼ tH
tH þ tM

ð12Þ

FAR ¼ t F
tH þ t F

ð13Þ

Where H, M, and F are different cases: H, observed rain
correctly detected; M, observed rain not detected; F, rain
detected but not observed; and tH, tM, and tF are the times of
occurrence of the corresponding case (Jiang et al., 2012). It is
noted that in this study, a threshold of 1.0 mm/day is used to
distinguish between rain and no rain. Fig. 5 displays the
scatterplots of daily SREs versus gauge observations during
eighteen months. The statistical indices shown in this figure
are the daily averaged value during eighteen months over
the twenty selected pixels. As seen in Fig. 5, the values of CC
and RBias for TMPA-3B42 are better than PERSIANN, but in
terms of RMSE, POD, and FAR, both products represent
similar results. In general, based on the obtained results in
this section, TMPA-3B42 indicates more accurate estimates
than PERSIANN. Note that the results presented in both
Figs. 4 and 5 are based on the comparison between original
SREs (before any adjustment of bias through the developed
model in the current study) and rain gauge data. Since the
focus of this study is on the assessment of the copula-based
bias adjustment model, the related results are presented in
the following sections.

4.1. Evaluation of bias-adjusted SREs

In order to assess the accuracy of the simulated ensem-
bles, three types of continuous statistical indices including
Bias, RMSE, and CC are used. These indices are computed for
both original (OSRE) and bias-adjusted (BASRE) estimates of
satellite precipitation products separately by comparing
them with the rain gauge observations as reference data.
Figs. 6 and 7 provide the values of three indices for both
PERSIANN and TMPA-3B42 products, respectively. Note that
all the three indices in this section are computed for the
fifty-four daily events over the twenty pixels. As discussed
before, an ensemble of BASRE of a daily event is simulated by
imposing copula-based randomly generated bias fields over
the OSRE of that event. Thus, for fifty-four selected daily
events, a set of fifty-four ensembles will be simulated, each of
which consists of a large number of realizations. Each of
realizations represents a possible daily rainfall event that can
occur over the studied domain. Consequently, in Figs. 6 and 7,
the values of three indices (Bias, RMSE, and CC) associated
with the original estimates (OSRE) are the average values of
fifty-four daily events over each pixel, also, the values
associated with the bias-adjusted estimates (BASRE) are the
average values of 50% quantiles of fifty-four bias-adjusted
ensembles (each ensemble with around one thousand
members has a value of 50% quantile) over each pixel. As
seen in Figs. 6 and 7, for all three indices the estimates of
both PERSIANN and TMPA-3B42 are improved after bias
adjustment. Table 1 contains the average values of statistical
indices over twenty pixels and shows the improvement
percentage of each index for both PERSIANN and TMPA-3B42
products.

It should be noted that throughout this paper, in order to
simulate an ensemble of BASRE, the outliers are removed
from the randomly generated biases before they are imposed
over OSRE (see Section 3.4).

4.2. Copula-based bias simulation

As previouslymentioned, in this study, a twenty-dimensional
multivariate Gaussian copula is employed to generate bias fields
of SREs randomly over twenty pixels. Since copulas are invariant
to monotonic transformations, the simulated random biases will
have the same spatial dependence structure as that of the
observed biases. To show the spatial dependency preserved by
copula, a comparison between the scatterplots of the observed
and copula-based randomly generated biases for two pixelswith
the highest and lowest correlation coefficient is displayed in
Figs. 8 and 9. Moreover, the CC values of bias between each pair
of pixels for all the twenty pixels are provided in Tables B1 and
B2 of Appendix B. With respect to the PERSIANN product, the
highest CC values between twopixels (pixels number 6 and12 in
Table B1) for the observed and generated biases are 0.96 and
0.97, respectively,while these values for TMPA-3B42 product are
0.89 and 0.91 (pixels number 10 and 11 in Table B2). However,



Fig. 4. Average daily variations of rainfall over twenty pixels, derived from rain gauges and estimates by PERSIANN and TMPA-3B42 products during six rainy
months of: (a) the first year, (b) of the second year, and (c) of the third year of study period.
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for PERSIANN the lowest CCs between two pixels for the
observed and generated biases are 0.43 and 0.49 (pixels number
2 and 19 in Table B1), respectively, and for TMPA-3B42 they are
0.09 and 0.16 (pixels number 8 and 20 in Table B2). As shown in
these figures, the correlations between the observed biases
(marked with red symbols) are reasonably preserved in the
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Fig. 5. Scatterplots of daily SREs versus gauge observations, spatially averaged over twenty pixels during eighteen rainy months of the three years study period:
(a) PERSIANN estimates versus rain gauges observations (b) TMPA-3B42 estimates versus rain gauge observations.
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generated biases (marked with blue symbols) for both
highest and lowest values of CC between two pixels.
Furthermore, the scatterplots of the bias values between
previously mentioned pixels for the six validation events are
presented in Figs. 8 and 9 (marked with green symbols).
Note that the values of CC associated with the six validation
Fig. 6. Comparison between OSRE and BASRE (the 50% quantile of simulated realiza
rainfall events over each pixel for PERSIANN product.
events for PERSIANN in Fig. 8a and b are 0.97 and 0.78,
respectively, while for TMPA-3B42 in Fig. 9a and b, they are
0.76 and 0.31. Considering the obtained results in this
section, one can conclude that the copula simulation is
done properly as the correlation is similar to that of the
observations.
tions) of average values of (a) Bias, (b) RMSE, and (c) CC for fifty-four daily
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Fig. 7. Comparison between OSRE and BASRE (the 50% quantile of simulated realizations) of average values of (a) Bias, (b) RMSE, and (c) CC for fifty-four daily
rainfall events over each pixel for TMPA-3B42 product.
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4.3. Testing the developed model and uncertainty analysis

The reliability of copula-based bias adjustment model
proposed in this study is tested for the six daily rainfall
events which have not participated in the ensembles
simulation. For this purpose, an appropriate set of generated
biases (see Sections 3.4 and 3.5) is imposed on the OSRE
associated with the six events in order to simulate six
ensembles of BASRE of those events. It is noted that the
average values of P and R factors for the selected set of
generated biases are 65% and 1.85 for PERSIANN product, and
70% and 1.65 for TMPA-3B42 product. Then, for each event,
the simulated ensemble is compared with the rain gauge
observations. Tables 2 and 3 represent the average values of
Table 1
Comparison of the average values of statistical indices of fifty-four daily rainfall even
realizations).

Satellite
products

Bias
(OSRE)

Bias
(BASRE)

Improved
Bias (%)

RMSE
(OSRE)

RM
(B

PERSIANN 10.01 1.16 88.41 22.73 14
TMPA-3B42 −1.95 0.70 64.10 25.18 15
RMSE and CC of the six evaluated events over each pixel for
PERSIANN and TMPA-3B42 products, respectively. Also, the
bias value associated with each tested event at each pixel for
both satellite products is exhibited in Tables 4 and 5. These
indices are obtained for OSRE and BASRE by comparing them
with rain gauge data separately. Notice that the indices for
BASRE are computed based on the 50% quantile values of the
simulated ensembles. As seen, all three indices are improved
after bias adjustment of the satellite estimates. With respect
to the values of P and R factors (Table 6) which are
considered as a criteria to examine the strength of the
simulated ensembles, one can see that the simulated
realizations of BASREs of Event 3 (Plot (c)) among the six
tested events demonstrate better agreement with the
ts over twenty pixels for the OSRE and BASRE (the 50% quantile of simulated

SE
ASRE)

Improved
RMSE (%)

CC(OSRE) CC(BASRE) Improved
CC (%)

.68 35.42 0.29 0.34 17.24

.95 36.66 0.47 0.54 14.89
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Fig. 8. Scatterplot of bias pairs for: the fifty-four observed events (red symbols), the six validation events (green symbols), and the generated samples by Gaussian
copula (blue symbols) associated with PERSIANN product over (a) two pixels with the highest value of the correlation coefficient, and (b) two pixels with the
lowest value of the correlation coefficient based on the observed events. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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observations for both PERSIANN and TMPA-3B42 products.
Table 6 shows the computed P and R factors of six tested
events for PERSIANN and TMPA separately. As displayed in
this table, Event 3 with P-factor of 80% indicates that the
80PPU band of simulated ensemble brackets the observed
values of sixteen pixels; also, the R-factor closer to 1 implies
that simulations are more consistent with the observations.
In addition, Figs. 10a to f and 11a to f for PERSIANN and
TMPA-3B42 products, respectively, display the results of
the simulated rainfall ensembles using Gaussian copula
model for the six selected events over twenty pixels (each
plot is associated with each event). In these figures, the
solid red lines show the OSREs, the solid blue lines express
Fig. 9. Scatterplot of bias pairs for: the fifty-four observed events (red symbols), the s
copula (blue symbols) associated with TMPA-3B42 product over (a) two pixels with
lowest value of the correlation coefficient based on the observed events. (For interpr
the web version of this article.)
the rainfall values derived from rain gauges, the gray areas
represent the 80PPU bands (see Section 3.5) of the
simulated realizations of BASREs, and the solid green lines
indicate the 50% quintiles of simulated realizations. As
shown, the BASREs using Gaussian copula (gray bands)
reasonably encompass the ground reference measurements
(solid blue lines). However, for each tested event there are
a number of pixels where the observed data fall outside the
simulated ensembles. The main reasons can be mentioned
as follows:

(1) The number of input data (fifty-four daily events) used
here may not be sufficient for simulations.
ix validation events (green symbols), and the generated samples by Gaussian
the highest value of the correlation coefficient, and (b) two pixels with the

etation of the references to color in this figure legend, the reader is referred to
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Table 2
Results of the average values of statistical indices of the six tested events
over each pixel, comparison between the OSRE and BASRE (the 50% quantile
of simulated realizations) for PERSIANN product.

Results of tested events (PERSIANN)

Pixel. no RMSE(BASRE) RMSE(OSRE) CC(BASRE) CC(OSRE)

1 7.59 14.10 0.82 0.24
2 8.93 11.87 0.19 0.34
3 2.57 7.68 0.87 0.28
4 1.93 6.48 0.86 0.33
5 1.79 9.04 0.93 0.16
6 5.34 8.32 0.93 0.47
7 6.09 10.71 0.69 0.41
8 3.83 5.07 0.42 0.72
9 3.50 6.59 −0.13 0.56
10 1.75 7.24 0.83 0.29
11 4.43 6.31 0.70 0.44
12 5.64 9.80 0.32 −0.06
13 7.01 9.72 0.37 0.17
14 6.69 6.65 −0.16 −0.10
15 1.30 8.52 0.95 0.13
16 2.93 6.68 0.84 0.54
17 8.15 3.62 0.56 0.92
18 10.30 8.97 0.66 0.79
19 7.64 6.56 0.43 0.71
20 5.63 4.78 0.10 0.69
Average 5.15 7.94 0.56 0.40
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(2) Input data are associated with two different seasons
(winter and spring) which may lead to different types
of storms.

(3) The quality assurance procedure employed on rain
gauge data may also have played a role.

Therefore, to improve the simulation, one can implement
the developed model by using a more reliable dataset of
Table 3
Results of the average values of statistical indices of the six tested events
over each pixel, comparison between the OSRE and BASRE (the 50% quantile
of simulated realizations) for TMPA-3B42 product.

Results of tested events (TMPA-3B42)

Pixel. no RMSE(BASRE) RMSE(OSRE) CC(BASRE) CC(OSRE)

1 6.10 9.45 0.85 0.38
2 4.68 12.17 0.95 0.84
3 3.07 3.84 0.79 0.34
4 2.19 6.21 0.93 0.48
5 1.44 5.81 0.97 0.21
6 1.68 9.96 0.99 0.93
7 7.18 20.47 0.74 0.24
8 5.44 6.66 0.16 −0.32
9 4.42 6.65 −0.60 −0.25
10 2.86 6.47 0.67 0.12
11 2.43 7.46 0.89 0.66
12 5.28 14.58 0.88 0.75
13 6.50 15.57 0.42 0.23
14 7.97 8.25 0.72 0.51
15 1.46 3.58 0.94 0.44
16 2.18 9.10 0.93 0.65
17 2.14 5.33 0.98 0.85
18 6.11 9.81 0.93 0.68
19 7.15 7.10 0.68 0.76
20 5.92 6.30 0.78 0.56
Average 4.31 8.74 0.73 0.45
similar types of the rainfall observations at a fine temporal
resolution (e.g. sub-daily) as input data.

5. Conclusions and recommendations

Reliable estimates of precipitation are essential for
hydrologic applications and water resources planning, since
uncertainties of precipitation as a major input data can
propagate into hydrological and meteorological models.
Furthermore, detailed information of rainfall and a better
understanding of its spatial and temporal distributions are
importantly needed for predicting the available water
resources and optimal planning to use them effectively. In
fact, precipitation is a key component of the global hydro-
logical cycle; also, understanding the underlying processes in
the hydrological cycle is fundamental to water resources
management and climate studies. Therefore, satellite-based
precipitation-estimate techniques which provide extended
precipitation coverage beyond ground in situ data are
increasingly applied to atmospheric and hydrological appli-
cations at different space-time scales (Hong et al., 2006a,b).
Nevertheless, satellite-retrieved precipitations are less direct
than ground-based data and lead to uncertainty in estimates.

In this study, the uncertainties associated with two high
resolution satellite precipitation products (PERSIANN and
TMPA-3B42) were described and adjusted through copula-
based model. Since it is well known that rainfall data are
dependent in both space and time, similar spatial structure
between generations and observation fields can be an
important feature of rainfall simulation models. Therefore, a
copula-based model that preserves the spatial dependency
among variables independent of their marginal would be a
useful method in the simulation of multivariate random
fields. Here, a multivariate Gaussian copula was developed in
order to simulate ensembles of bias-adjusted rainfall realiza-
tions of SREs. In order to measure the robustness of the
simulated realizations of BASREs, two factors (P and R) were
computed for each simulated ensemble by comparing it with
the observed data. In fact, using P and R, one can predict the
uncertainty associated with the BASREs quantitatively. Fur-
thermore, since each set of randomly generated biases
resulted in an individual pair of P and R factors for simulated
ensemble, several sets of bias fieldswere generated randomly,
a more appropriate set then was selected based on a better
pairs of P and R values. This procedure can lead to a more
accurate simulation of ensembles. With respect to the three
statistical indices (Bias, RMSE, and CC) employed to evaluate
the performance of the bias-adjusted realizations, one can
argue that the developed model was able to improve the
satellite rainfall estimates considerably. In addition, the
validation results implied that the bias-adjusted band of the
simulated realizations encompassed the observed data
reasonably.

It is worth remembering that the uncertainty analysis
framework presented here was based on the simulated
ensembles of bias fields. In future research, it would be
interesting to see how the technique reproduces the full
distribution of bias using additional measures of reliability of
the simulated ensembles. Various methods for the evaluation
of ensemble-based forecasts can be found in the reviewby Toth
et al. (2003). Moreover, using ensemble analysis instead of a



Table 4
Results of Bias of the six tested events over each pixel, comparison between the OSRE and BASRE (the 50% quantile of simulated realizations) for PERSIANN
product.

Bias of tested events (PERSIANN)

Event 1 Event 2 Event 3 Event 4 Event 5 Event 6

Pixel no Bias
(OSRE)

Bias
(BASRE)

Bias
(OSRE)

Bias
(BASRE)

Bias
(OSRE)

Bias
(BASRE)

Bias
(OSRE)

Bias
(BASRE)

Bias
(OSRE)

Bias
(BASRE)

Bias
(OSRE)

Bias
(BASRE)

1 13.4 2.5 −3.3 −1.5 −5.8 −1.5 −8.4 −9.9 25.6 14.5 −16.1 −2.7
2 7.3 −6.3 12.7 12.2 13.8 16.2 6.2 −1.6 16.0 −2.0 −12.2 −2.4
3 10.0 −1.8 −0.4 3.0 −3.1 1.4 7.1 2.5 17.0 3.2 −13.2 0.0
4 7.9 −1.5 −3.6 0.6 −7.4 −2.8 1.9 −1.3 13.2 3.0 −9.9 1.0
5 8.0 0.0 −6.7 −2.5 −4.5 0.8 −0.3 −1.5 12.3 1.2 −15.9 −0.9
6 8.2 3.0 −7.2 −2.3 −7.7 0.0 2.7 −1.9 21.9 11.8 −14.5 −0.6
7 3.5 −0.5 −6.6 −2.5 −17.6 −8.5 8.1 2.3 24.3 12.0 −15.8 −2.0
8 10.6 3.8 −5.0 −0.5 −7.5 −1.2 3.7 1.1 1.7 −8.2 −6.7 2.9
9 3.1 −2.1 −6.2 2.0 −5.3 2.1 5.4 2.2 1.8 −7.3 −10.2 2.3
10 4.9 2.0 −7.8 −1.6 −7.2 0.4 4.3 1.7 5.3 −3.6 −11.5 0.6
11 4.0 0.7 0.8 4.4 −11.6 −2.3 4.0 1.5 17.5 8.9 −8.4 2.9
12 4.5 6.8 −1.3 1.3 −8.2 0.2 6.5 −6.7 11.1 −6.0 −16.5 −6.1
13 3.0 −3.0 2.9 4.5 −8.7 −1.3 21.4 15.6 17.5 2.3 −12.2 −1.2
14 2.7 10.3 4.9 9.4 −7.9 4.5 5.4 0.8 11.5 −3.7 −10.3 −1.7
15 1.5 −0.3 −3.0 0.4 −8.3 −0.7 1.3 −2.8 10.0 −0.3 −14.3 −1.8
16 1.1 −0.9 0.6 2.2 −2.3 5.5 4.0 −0.8 13.0 3.7 −14.0 −1.3
17 −2.5 −8.6 −0.9 −0.5 −6.2 1.8 2.4 −2.0 31.8 16.6 0.4 4.2
18 7.0 −1.5 4.0 2.6 −8.7 −5.0 7.0 1.7 38.8 24.3 1.5 2.4
19 −4.0 −4.5 3.5 3.8 −11.2 −2.6 7.2 3.0 25.5 15.7 −7.2 −0.3
20 2.4 5.0 3.1 3.2 −5.6 2.4 7.4 −1.8 12.8 −5.0 1.9 −10.8
Average 4.8 0.2 −1.0 1.9 −6.6 0.5 4.9 0.1 16.4 4.1 −10.2 −0.8
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single realization, one can improve the uncertainty assessment
of the error propagation from the precipitation input into the
hydrological models and water resources simulations. Also,
with respect to the extremeprecipitation events, i.e., floods and
droughts, using ensemble-based models, one can evaluate
Table 5
Results of Bias of the six tested events over each pixel, comparison between the O
product.

Bias of tested events (TMPA-3B42)

Event 1 Event 2 Event 3

Pixel no Bias
(OSRE)

Bias
(BASRE)

Bias
(OSRE)

Bias
(BASRE)

Bias
(OSRE)

Bias
(BASRE)

1 −6.6 −0.5 0.4 0.2 −0.6 1.0
2 11.9 −0.2 −20.3 −7.7 −10.1 −2.9
3 4.6 −1.5 1.9 5.9 −2.0 0.8
4 9.4 −0.2 1.5 0.1 2.7 −3.8
5 7.8 −1.2 −2.4 −1.9 −9.4 −2.0
6 −13.5 −2.0 −7.3 −1.9 −15.4 −1.3
7 −1.7 −3.5 −35.1 −7.2 −32.3 −13.0
8 13.9 3.0 0.1 −1.9 4.8 −1.4
9 7.3 −1.9 3.7 2.7 7.8 1.6
10 8.2 0.4 −12.1 −2.0 4.1 −0.5
11 −0.2 −2.5 −15.0 0.8 −7.8 −5.1
12 −23.8 5.1 −6.1 6.0 −21.2 6.3
13 −5.6 −5.0 −3.7 5.0 −26.4 −3.6
14 −7.2 6.5 −3.0 11.5 −14.4 9.2
15 5.9 1.0 −0.6 −0.4 2.8 0.0
16 −7.8 −0.7 −0.7 0.6 −19.4 −0.7
17 3.2 −2.0 −1.2 0.0 −11.0 0.5
18 4.4 −0.2 4.0 4.0 −11.3 −3.6
19 3.0 −0.5 4.3 2.4 −1.0 1.2
20 0.7 1.8 1.8 7.0 −9.8 7.7
Average 0.7 −0.2 −4.5 1.2 −8.5 −0.5
extreme prediction uncertainty and its associated risks for a
specified precipitation.

In this study as a first attempt to quantify and adjust the
uncertainty associated with two major satellite-based pre-
cipitation products over a developing region in Iran, a simple
SRE and BASRE (the 50% quantile of simulated realizations) for TMPA-3B42

Event 4 Event 5 Event 6

Bias
(OSRE)

Bias
(BASRE)

Bias
(OSRE)

Bias
(BASRE)

Bias
(OSRE)

Bias
(BASRE)

−9.9 −6.5 16.4 12.9 −12.0 −0.4
5.8 −1.0 12.8 0.0 5.9 6.3

−1.4 3.5 11.4 2.2 −7.2 1.4
−0.8 −2.0 13.7 −1.0 −10.7 −0.9

2.0 −2.1 11.8 −1.8 −6.5 −0.9
0.3 −2.1 −10.7 −2.5 −2.5 2.1

−0.8 0.1 8.6 −0.3 −2.0 −0.1
3.5 −0.8 1.6 −12.8 5.9 0.9
6.4 3.1 2.0 −11.9 −9.6 −0.1
5.0 0.8 5.0 −8.8 −5.9 −1.4
2.4 −0.4 18.9 3.5 −2.0 2.3
5.2 7.5 −13.5 3.4 −3.7 1.5

13.6 14.5 13.4 −0.8 3.9 −0.9
2.2 9.0 11.2 4.0 3.3 5.1

−0.2 −2.6 10.2 −1.1 −5.9 −1.1
3.5 −1.0 7.0 0.5 −0.6 0.0
2.2 −0.8 4.9 3.3 3.1 0.9
4.9 3.2 19.7 13.3 1.7 −0.8
7.4 3.4 24.4 15.7 −1.2 −1.9
9.6 9.7 2.1 2.7 1.2 2.5
3.0 1.8 8.5 1.0 −2.2 0.7



Table 6
Results of the P and R-factors of the six tested events for both PERSIANN and TMPA-3B42 products.

Satellite products PERSIANN TMPA-3B42

Tested events Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 1 Event 2 Event 3 Event 4 Event 5 Event 6

P-factor 65% 65% 80% 75% 50% 65% 80% 70% 80% 70% 70% 70%
R-factor 2.16 1.28 1.14 1.35 1.07 1.59 1.94 1.57 1.12 1.22 0.98 1.22

Fig. 10. Comparison between original PERSIANN rainfall estimates (red line), rain gauge observations (blue line), and 80% confidence band associated with
bias-adjusted rainfall estimates (gray band) of the six tested daily events (a, b, c, d, e, f) over twenty studied pixels (vertical and horizontal axes represent the
rainfall value (mm/day) and the number of pixel, respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

160 S. Moazami et al. / Atmospheric Research 137 (2014) 145–166

image of Fig.�10


Fig. 11. Comparison between original TMPA-3B42 rainfall estimates (red line), rain gauge observations (blue line), and 80% confidence band associated with
bias-adjusted rainfall estimates (gray band) of the six tested daily events (a, b, c, d, e, f) over twenty studied pixels (vertical and horizontal axes represent the
rainfall value (mm/day) and the number of pixel, respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

161S. Moazami et al. / Atmospheric Research 137 (2014) 145–166
copula (Gaussian) was selected to simulations. However, for
future research, one can implement the method presented
here using t-copula as another elliptical copula.

Themodel proposed herewas subject to various limitations
such as unevenly distributed rain gauges over the study area.
Indeed, 50% of the selected pixels contained one rain gauge that
may be inadequate to have an accurate simulation. However,
to alleviate the effect of gauge uncertainties, pixels with a
minimum of three rain gauges are required (Habib et al.,
2009). Additionally, unreliable surface gauge measurements
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Table A1
Parametric distributions at each pixel for PERSIANN product.

Pixel no Distribution Parameter values

1 GEV k = −0.098 σ = 14.83 μ = 1.9
2 GEV 0.06 21.7 11.16
3 Logistic 11.46 12.81
4 Normal 19.9 8.17
5 GEV −0.027 14.01 −0.31
6 GEV 0.14 14.87 −0.577
7 GEV 0.145 16.03 1.34
8 Normal 16.24 5.92
9 Logistic 8.85 5.41
10 GEV 0.09 11.27 −1.029
11 Logistic 13.1 8.1
12 GEV 0.084 13.5 −0.247
13 Normal 22.98 14.75
14 Normal 22.97 17.91
15 GEV 0.184 11.44 −3.04
16 Logistic 7.72 5.07
17 GEV 0.176 15.75 3.183
18 Normal 25.44 19.4
19 Normal 15.33 3.91
20 GEV 0.243 12.32 −1.43

Table A2
Parametric distributions at each pixel for TMPA-3B42 product.

Pixel no Distribution Parameter values

1 GEV k = −0.59 σ = 23.9 μ = −4.46
2 Normal 23 16.5
3 GEV −0.53 27.4 −4.43
4 Normal 30.03 −1.02
5 GEV −0.7 26.7 −3.15
6 GEV −0.4 32.16 −11.26
7 GEV −0.65 37.3 −9.04
8 GEV −0.71 26.9 −4.1
9 GEV −0.45 19.8 −3.08
10 Logistic 13.87 1.06
11 GEV −0.42 28.02 −8.5
12 Logistic 12.46 −0.116
13 Logistic 18.99 −0.805
14 GEV −0.65 31.6 −0.66
15 GEV −0.31 18.3 −4.91
16 Normal 23.74 −1.96
17 Logistic 15.37 4.74
18 GEV −0.28 22.2 2.6
19 GEV −0.14 14.6 −2.8
20 Normal 27.14 1.72
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would result in erroneous parameter estimation, and
consequently unrealistic ensembles of uncertainty fields.
Therefore, to verify the appropriateness of the presented
model, further investigations including simulations over
regions with a dense rain gauge network, as well as in a fine
temporal resolution (e.g. sub-daily) are required. Also, the
presented approach in this paper cannot be applied directly
to ungauged pixels without ground truth. In this case, the
bias (observed or generated) could be extrapolated over
ungauged pixels using geostatistical techniques, e.g. Inverse
Distance Weighted (IDW) and Kriging (Shrestha, 2011).

Overall, the obtained results of this study indicated that
the presented framework was able to adjust the uncertainty
associated with the satellite precipitation products consid-
erably. Moreover, the simulated biases and uncertainty
bands here can be generalized over the ungauged basins
where suffer from a lack of ground-based rainfall measure-
ments considering the similarities in topography, physiog-
raphy and climate conditions.
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Appendix A. Probability distribution function of SREs bias

The fitted probability distribution function of fifty-four
observed biases at each pixel is shown for PERSIANN and
TMPA-3B42 products, respectively in Tables A1 and A2.
Also, the related values of parameters for each marginal
distribution are presented in these tables. Note that “GEV”
in Tables A1 and A2 refers to Generalized Extreme Value
distribution. The GEV distribution is a flexible three-
parameter model that combines the Gumbel, Fréchet, and
Weibull maximum extreme value distributions. It has the
following PDF:

fx ¼
1
σ

exp − 1þ kzð Þ−1=k
� �

1þ kzð Þ−1−1=k k≠
1
σ

exp −z− exp −zð Þð Þ k ¼ 0

8><
>: ðA1Þ

Where z = (x − μ)/σ, x is the variable (here the value of
bias), and k, σ, μ are the shape, scale, and location parameters
respectively. The scale must be positive (sigma N 0), the
shape and location can take on any real value. The range of
definition of the GEV distribution depends on k:

1þ k
x−μð Þ
σ

N0 for k≠0

−∞ b x b þ ∞ for k ¼ 0
ðA2Þ

Various values of the shape parameter yield the extreme
value type I, II, and III distributions. Specifically, the three
cases k = 0, k N 0, and k b 0 correspond, respectively, to the
Gumbel, Fréchet, and Weibull families (Kotz and Nadarajah,
2000).
Appendix B. Correlation coefficient of SREs bias

In this section the CC values of SREs bias between each
pair of twenty pixels are presented for both PERSIANN and
TMPA-3B42 products, respectively in Tables B1 and B2. In
these tables, “Obs”, “Gen”, and “Tes”, respectively, refer to the
fifty-four observed, one thousand generated, and six tested
events. As shown the randomly generated biases retain the
correlation imposed in the copula model which was derived
from the observed values.



Table B1
The CC values of the bias between each pair of twenty pixels for PERSIANN product based on the fifty-four observed (Obs), one thousand generated (Gen), and six
tested (Tes) events.

Event Pixel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Obs 1 1.00 0.76 0.85 0.80 0.86 0.77 0.69 0.77 0.77 0.79 0.71 0.79 0.72 0.60 0.76 0.82 0.52 0.55 0.52 0.48
Gen 1.00 0.75 0.87 0.85 0.88 0.83 0.68 0.78 0.77 0.82 0.78 0.82 0.71 0.63 0.79 0.82 0.59 0.55 0.65 0.57
Tes 1.00 0.83 0.90 0.92 0.93 0.87 0.75 0.66 0.69 0.78 0.84 0.82 0.33 0.76 0.82 0.64 0.74 0.79 0.81 0.57
Obs 2 0.76 1.00 0.82 0.75 0.76 0.65 0.70 0.68 0.69 0.65 0.64 0.72 0.78 0.73 0.64 0.71 0.64 0.62 0.43 0.58
Gen 0.75 1.00 0.78 0.70 0.71 0.68 0.63 0.62 0.61 0.64 0.62 0.70 0.76 0.77 0.63 0.68 0.70 0.59 0.49 0.64
Tes 0.83 1.00 0.90 0.83 0.84 0.74 0.67 0.70 0.80 0.83 0.81 0.83 0.62 0.79 0.91 0.88 0.63 0.64 0.78 0.66
Obs 3 0.85 0.82 1.00 0.92 0.93 0.79 0.73 0.79 0.85 0.84 0.77 0.86 0.80 0.66 0.84 0.76 0.59 0.68 0.57 0.65
Gen 0.87 0.78 1.00 0.93 0.94 0.86 0.76 0.82 0.85 0.87 0.85 0.89 0.82 0.73 0.88 0.80 0.72 0.70 0.71 0.71
Tes 0.90 0.90 1.00 0.95 0.97 0.90 0.83 0.86 0.92 0.97 0.87 0.92 0.65 0.81 0.95 0.83 0.74 0.75 0.85 0.71
Obs 4 0.80 0.75 0.92 1.00 0.92 0.88 0.74 0.87 0.91 0.92 0.90 0.93 0.83 0.61 0.89 0.79 0.56 0.70 0.62 0.67
Gen 0.85 0.70 0.93 1.00 0.95 0.89 0.74 0.87 0.91 0.93 0.92 0.92 0.79 0.67 0.91 0.81 0.66 0.67 0.75 0.69
Tes 0.92 0.83 0.95 1.00 1.00 0.95 0.88 0.72 0.83 0.89 0.91 0.94 0.63 0.85 0.92 0.81 0.66 0.76 0.84 0.63
Obs 5 0.86 0.76 0.93 0.92 1.00 0.83 0.71 0.85 0.90 0.91 0.81 0.88 0.77 0.61 0.85 0.79 0.58 0.66 0.60 0.66
Gen 0.88 0.71 0.94 0.95 1.00 0.89 0.75 0.87 0.91 0.94 0.90 0.91 0.77 0.66 0.90 0.81 0.67 0.66 0.74 0.70
Tes 0.93 0.84 0.97 1.00 1.00 0.93 0.85 0.78 0.86 0.91 0.88 0.92 0.60 0.81 0.91 0.79 0.66 0.73 0.81 0.60
Obs 6 0.77 0.65 0.79 0.88 0.83 1.00 0.72 0.87 0.82 0.90 0.93 0.96 0.80 0.53 0.81 0.80 0.55 0.62 0.60 0.52
Gen 0.83 0.68 0.86 0.89 0.89 1.00 0.82 0.89 0.85 0.91 0.92 0.97 0.78 0.65 0.85 0.80 0.71 0.66 0.75 0.70
Tes 0.87 0.74 0.90 0.95 0.93 1.00 0.97 0.61 0.72 0.83 0.97 0.97 0.63 0.92 0.92 0.80 0.81 0.90 0.94 0.79
Obs 7 0.69 0.70 0.73 0.74 0.71 0.72 1.00 0.83 0.71 0.72 0.70 0.78 0.83 0.72 0.68 0.66 0.73 0.70 0.49 0.67
Gen 0.68 0.63 0.76 0.74 0.75 0.82 1.00 0.83 0.73 0.78 0.76 0.82 0.80 0.73 0.72 0.67 0.83 0.75 0.62 0.78
Tes 0.75 0.67 0.83 0.88 0.85 0.97 1.00 0.53 0.67 0.79 0.97 0.97 0.72 0.94 0.90 0.83 0.80 0.90 0.94 0.86
Obs 8 0.77 0.68 0.79 0.87 0.85 0.87 0.83 1.00 0.88 0.89 0.84 0.90 0.83 0.63 0.78 0.79 0.68 0.71 0.63 0.66
Gen 0.78 0.62 0.82 0.87 0.87 0.89 0.83 1.00 0.88 0.90 0.88 0.91 0.78 0.69 0.83 0.78 0.74 0.71 0.75 0.71
Tes 0.66 0.70 0.86 0.72 0.78 0.61 0.53 1.00 0.95 0.93 0.51 0.62 0.52 0.41 0.71 0.58 0.49 0.40 0.51 0.43
Obs 9 0.77 0.69 0.85 0.91 0.90 0.82 0.71 0.88 1.00 0.93 0.80 0.87 0.76 0.60 0.76 0.74 0.60 0.73 0.58 0.64
Gen 0.77 0.61 0.85 0.91 0.91 0.85 0.73 0.88 1.00 0.95 0.84 0.87 0.72 0.64 0.82 0.73 0.66 0.70 0.74 0.67
Tes 0.69 0.80 0.92 0.83 0.86 0.72 0.67 0.95 1.00 0.98 0.67 0.78 0.74 0.60 0.85 0.79 0.48 0.46 0.62 0.53
Obs 10 0.79 0.65 0.84 0.92 0.91 0.90 0.72 0.89 0.93 1.00 0.91 0.93 0.80 0.57 0.89 0.77 0.58 0.70 0.61 0.65
Gen 0.82 0.64 0.87 0.93 0.94 0.91 0.78 0.90 0.95 1.00 0.92 0.92 0.76 0.65 0.90 0.76 0.68 0.72 0.74 0.70
Tes 0.78 0.83 0.97 0.89 0.91 0.83 0.79 0.93 0.98 1.00 0.78 0.87 0.73 0.71 0.91 0.82 0.64 0.63 0.76 0.66
Obs 11 0.71 0.64 0.77 0.90 0.81 0.93 0.70 0.84 0.80 0.91 1.00 0.94 0.82 0.50 0.88 0.78 0.50 0.61 0.59 0.54
Gen 0.78 0.62 0.85 0.92 0.90 0.92 0.76 0.88 0.84 0.92 1.00 0.94 0.79 0.65 0.92 0.80 0.66 0.64 0.74 0.65
Tes 0.84 0.81 0.87 0.91 0.88 0.97 0.97 0.51 0.67 0.78 1.00 0.98 0.68 0.99 0.95 0.87 0.81 0.91 0.97 0.85
Obs 12 0.79 0.72 0.86 0.93 0.88 0.96 0.78 0.90 0.87 0.93 0.94 1.00 0.84 0.62 0.86 0.82 0.61 0.68 0.69 0.64
Gen 0.82 0.70 0.89 0.92 0.91 0.97 0.82 0.91 0.87 0.92 0.94 1.00 0.81 0.70 0.88 0.83 0.74 0.68 0.80 0.72
Tes 0.82 0.83 0.92 0.94 0.92 0.97 0.97 0.62 0.78 0.87 0.98 1.00 0.78 0.96 0.98 0.92 0.76 0.85 0.94 0.83
Obs 13 0.72 0.78 0.80 0.83 0.77 0.80 0.83 0.83 0.76 0.80 0.82 0.84 1.00 0.78 0.75 0.78 0.80 0.78 0.56 0.72
Gen 0.71 0.76 0.82 0.79 0.77 0.78 0.80 0.78 0.72 0.76 0.79 0.81 1.00 0.85 0.79 0.75 0.88 0.77 0.65 0.81
Tes 0.33 0.62 0.65 0.63 0.60 0.63 0.72 0.52 0.74 0.73 0.68 0.78 1.00 0.71 0.80 0.90 0.34 0.42 0.61 0.65
Obs 14 0.60 0.73 0.66 0.61 0.61 0.53 0.72 0.63 0.60 0.57 0.50 0.62 0.78 1.00 0.55 0.63 0.82 0.75 0.44 0.64
Gen 0.63 0.77 0.73 0.67 0.66 0.65 0.73 0.69 0.64 0.65 0.65 0.70 0.85 1.00 0.65 0.66 0.87 0.80 0.53 0.71
Tes 0.76 0.79 0.81 0.85 0.81 0.92 0.94 0.41 0.60 0.71 0.99 0.96 0.71 1.00 0.93 0.90 0.76 0.88 0.95 0.85
Obs 15 0.76 0.64 0.84 0.89 0.85 0.81 0.68 0.78 0.76 0.89 0.88 0.86 0.75 0.55 1.00 0.74 0.49 0.60 0.63 0.66
Gen 0.79 0.63 0.88 0.91 0.90 0.85 0.72 0.83 0.82 0.90 0.92 0.88 0.79 0.65 1.00 0.80 0.64 0.63 0.78 0.69
Tes 0.82 0.91 0.95 0.92 0.91 0.92 0.90 0.71 0.85 0.91 0.95 0.98 0.80 0.93 1.00 0.95 0.74 0.79 0.92 0.82
Obs 16 0.82 0.71 0.76 0.79 0.79 0.80 0.66 0.79 0.74 0.77 0.78 0.82 0.78 0.63 0.74 1.00 0.65 0.58 0.62 0.50
Gen 0.82 0.68 0.80 0.81 0.81 0.80 0.67 0.78 0.73 0.76 0.80 0.83 0.75 0.66 0.80 1.00 0.69 0.55 0.75 0.62
Tes 0.64 0.88 0.83 0.81 0.79 0.80 0.83 0.58 0.79 0.82 0.87 0.92 0.90 0.90 0.95 1.00 0.57 0.65 0.82 0.77
Obs 17 0.52 0.64 0.59 0.56 0.58 0.55 0.73 0.68 0.60 0.58 0.50 0.61 0.80 0.82 0.49 0.65 1.00 0.87 0.51 0.81
Gen 0.59 0.70 0.72 0.66 0.67 0.71 0.83 0.74 0.66 0.68 0.66 0.74 0.88 0.87 0.64 0.69 1.00 0.87 0.59 0.88
Tes 0.74 0.63 0.74 0.66 0.66 0.81 0.80 0.49 0.48 0.64 0.81 0.76 0.34 0.76 0.74 0.57 1.00 0.96 0.92 0.90
Obs 18 0.55 0.62 0.68 0.70 0.66 0.62 0.70 0.71 0.73 0.70 0.61 0.68 0.78 0.75 0.60 0.58 0.87 1.00 0.49 0.81
Gen 0.55 0.59 0.70 0.67 0.66 0.66 0.75 0.71 0.70 0.72 0.64 0.68 0.77 0.80 0.63 0.55 0.87 1.00 0.50 0.78
Tes 0.79 0.64 0.75 0.76 0.73 0.90 0.90 0.40 0.46 0.63 0.91 0.85 0.42 0.88 0.79 0.65 0.96 1.00 0.97 0.90
Obs 19 0.52 0.43 0.57 0.62 0.60 0.60 0.49 0.63 0.58 0.61 0.59 0.69 0.56 0.44 0.63 0.62 0.51 0.49 1.00 0.50
Gen 0.65 0.49 0.71 0.75 0.74 0.75 0.62 0.75 0.74 0.74 0.74 0.80 0.65 0.53 0.78 0.75 0.59 0.50 1.00 0.57
Tes 0.81 0.78 0.85 0.84 0.81 0.94 0.94 0.51 0.62 0.76 0.97 0.94 0.61 0.95 0.92 0.82 0.92 0.97 1.00 0.93
Obs 20 0.48 0.58 0.65 0.67 0.66 0.52 0.67 0.66 0.64 0.65 0.54 0.64 0.72 0.64 0.66 0.50 0.81 0.81 0.50 1.00
Gen 0.57 0.64 0.71 0.69 0.70 0.70 0.78 0.71 0.67 0.70 0.65 0.72 0.81 0.71 0.69 0.62 0.88 0.78 0.57 1.00
Tes 0.57 0.66 0.71 0.63 0.60 0.79 0.86 0.43 0.53 0.66 0.85 0.83 0.65 0.85 0.82 0.77 0.90 0.90 0.93 1.00
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Table B2
The CC values of the bias between each pair of twenty pixels for TMPA-3B42 product based on the fifty-four observed (Obs), one thousand generated (Gen), and
six tested (Tes) events.

Event Pixel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Obs 1 1.00 0.33 0.65 0.62 0.51 0.45 0.41 0.56 0.43 0.36 0.42 0.42 0.41 0.20 0.38 0.34 0.33 0.20 0.27 0.43
Gen 1.00 0.34 0.65 0.62 0.55 0.47 0.41 0.61 0.47 0.40 0.41 0.44 0.44 0.25 0.41 0.36 0.31 0.22 0.29 0.43
Tes 1.00 0.36 0.98 0.75 0.84 0.51 0.34 0.34 0.58 0.59 0.69 0.53 0.39 0.74 0.90 0.57 0.74 0.91 0.84 0.60
Obs 2 0.33 1.00 0.53 0.29 0.44 0.38 0.46 0.32 0.41 0.45 0.45 0.53 0.47 0.52 0.41 0.39 0.46 0.31 0.29 0.37
Gen 0.34 1.00 0.57 0.28 0.46 0.36 0.43 0.35 0.40 0.44 0.42 0.51 0.44 0.52 0.42 0.35 0.45 0.30 0.23 0.37
Tes 0.36 1.00 0.45 0.23 0.51 0.25 0.93 0.69 0.10 0.80 0.67 0.23 0.28 0.37 0.32 0.08 0.60 0.43 0.41 0.23
Obs 3 0.65 0.53 1.00 0.69 0.78 0.61 0.47 0.49 0.49 0.52 0.57 0.62 0.41 0.38 0.59 0.49 0.45 0.30 0.37 0.54
Gen 0.65 0.57 1.00 0.71 0.80 0.59 0.47 0.54 0.51 0.57 0.59 0.65 0.41 0.38 0.62 0.48 0.46 0.32 0.33 0.59
Tes 0.98 0.45 1.00 0.75 0.85 0.53 0.38 0.46 0.66 0.69 0.66 0.52 0.37 0.64 0.87 0.53 0.79 0.85 0.77 0.59
Obs 4 0.62 0.29 0.69 1.00 0.74 0.67 0.26 0.70 0.60 0.62 0.66 0.52 0.33 0.19 0.55 0.34 0.31 0.41 0.42 0.40
Gen 0.62 0.28 0.71 1.00 0.76 0.66 0.26 0.72 0.60 0.64 0.63 0.50 0.31 0.21 0.54 0.36 0.26 0.42 0.41 0.44
Tes 0.75 0.23 0.75 1.00 0.93 0.03 0.18 0.11 0.77 0.63 0.65 0.02 0.10 0.51 0.89 0.16 0.21 0.67 0.79 0.28
Obs 5 0.51 0.44 0.78 0.74 1.00 0.69 0.40 0.50 0.57 0.74 0.69 0.73 0.41 0.39 0.72 0.64 0.44 0.37 0.50 0.46
Gen 0.55 0.46 0.80 0.76 1.00 0.70 0.40 0.58 0.63 0.79 0.73 0.76 0.44 0.38 0.75 0.65 0.42 0.38 0.49 0.47
Tes 0.84 0.51 0.85 0.93 1.00 0.23 0.50 0.15 0.73 0.83 0.85 0.29 0.38 0.69 0.96 0.37 0.48 0.83 0.90 0.51
Obs 6 0.45 0.38 0.61 0.67 0.69 1.00 0.46 0.59 0.59 0.68 0.75 0.71 0.53 0.38 0.73 0.60 0.37 0.33 0.55 0.20
Gen 0.47 0.36 0.59 0.66 0.70 1.00 0.44 0.64 0.60 0.68 0.73 0.70 0.51 0.38 0.71 0.63 0.32 0.31 0.55 0.19
Tes 0.51 0.25 0.53 0.03 0.23 1.00 0.33 0.61 0.28 0.37 0.28 0.98 0.82 0.48 0.35 0.91 0.83 0.51 0.29 0.89
Obs 7 0.41 0.46 0.47 0.26 0.40 0.46 1.00 0.23 0.30 0.34 0.41 0.58 0.79 0.74 0.31 0.64 0.80 0.52 0.35 0.57
Gen 0.41 0.43 0.47 0.26 0.40 0.44 1.00 0.30 0.34 0.34 0.39 0.57 0.74 0.64 0.31 0.59 0.77 0.48 0.40 0.54
Tes 0.34 0.93 0.38 0.18 0.50 0.33 1.00 0.51 0.02 0.73 0.80 0.36 0.50 0.60 0.38 0.27 0.56 0.56 0.54 0.39
Obs 8 0.56 0.32 0.49 0.70 0.50 0.59 0.23 1.00 0.82 0.66 0.63 0.50 0.32 0.15 0.59 0.30 0.22 0.22 0.38 0.09
Gen 0.61 0.35 0.54 0.72 0.58 0.64 0.30 1.00 0.83 0.69 0.65 0.54 0.36 0.21 0.58 0.39 0.25 0.28 0.44 0.16
Tes 0.34 0.69 0.46 0.11 0.15 0.61 0.51 1.00 0.11 0.51 0.16 0.48 0.24 0.04 0.04 0.25 0.83 0.20 0.00 0.31
Obs 9 0.43 0.41 0.49 0.60 0.57 0.59 0.30 0.82 1.00 0.77 0.69 0.69 0.44 0.35 0.64 0.41 0.32 0.34 0.46 0.15
Gen 0.47 0.40 0.51 0.60 0.63 0.60 0.34 0.83 1.00 0.78 0.68 0.70 0.45 0.37 0.59 0.46 0.33 0.37 0.52 0.18
Tes 0.58 0.10 0.66 0.77 0.73 0.28 0.02 0.11 1.00 0.65 0.31 0.27 0.30 0.19 0.69 0.34 0.30 0.39 0.45 0.50
Obs 10 0.36 0.45 0.52 0.62 0.74 0.68 0.34 0.66 0.77 1.00 0.89 0.85 0.53 0.39 0.77 0.50 0.41 0.38 0.48 0.24
Gen 0.40 0.44 0.57 0.64 0.79 0.68 0.34 0.69 0.78 1.00 0.91 0.85 0.51 0.40 0.76 0.54 0.40 0.38 0.48 0.27
Tes 0.59 0.80 0.69 0.63 0.83 0.37 0.73 0.51 0.65 1.00 0.76 0.37 0.49 0.47 0.68 0.33 0.59 0.60 0.63 0.54
Obs 11 0.42 0.45 0.57 0.66 0.69 0.75 0.41 0.63 0.69 0.89 1.00 0.89 0.57 0.42 0.76 0.62 0.41 0.35 0.49 0.19
Gen 0.41 0.42 0.59 0.63 0.73 0.73 0.39 0.65 0.68 0.91 1.00 0.90 0.52 0.40 0.77 0.64 0.37 0.32 0.48 0.21
Tes 0.69 0.67 0.66 0.65 0.85 0.28 0.80 0.16 0.31 0.76 1.00 0.38 0.54 0.88 0.83 0.43 0.49 0.88 0.93 0.54
Obs 12 0.42 0.53 0.62 0.52 0.73 0.71 0.58 0.50 0.69 0.85 0.89 1.00 0.65 0.55 0.71 0.74 0.52 0.36 0.53 0.29
Gen 0.44 0.51 0.65 0.50 0.76 0.70 0.57 0.54 0.70 0.85 0.90 1.00 0.64 0.51 0.73 0.75 0.49 0.34 0.52 0.30
Tes 0.53 0.23 0.52 0.02 0.29 0.98 0.36 0.48 0.27 0.37 0.38 1.00 0.89 0.60 0.43 0.96 0.78 0.59 0.40 0.94
Obs 13 0.41 0.47 0.41 0.33 0.41 0.53 0.79 0.32 0.44 0.53 0.57 0.65 1.00 0.79 0.52 0.53 0.76 0.54 0.29 0.47
Gen 0.44 0.44 0.41 0.31 0.44 0.51 0.74 0.36 0.45 0.51 0.52 0.64 1.00 0.72 0.52 0.55 0.73 0.54 0.28 0.47
Tes 0.39 0.28 0.37 0.10 0.38 0.82 0.50 0.24 0.30 0.49 0.54 0.89 1.00 0.67 0.48 0.91 0.55 0.58 0.49 0.95
Obs 14 0.20 0.52 0.38 0.19 0.39 0.38 0.74 0.15 0.35 0.39 0.42 0.55 0.79 1.00 0.45 0.56 0.83 0.59 0.22 0.52
Gen 0.25 0.52 0.38 0.21 0.38 0.38 0.64 0.21 0.37 0.40 0.40 0.51 0.72 1.00 0.43 0.49 0.80 0.58 0.25 0.48
Tes 0.74 0.37 0.64 0.51 0.69 0.48 0.60 0.04 0.19 0.47 0.88 0.60 0.67 1.00 0.81 0.69 0.53 0.95 0.92 0.69
Obs 15 0.38 0.41 0.59 0.55 0.72 0.73 0.31 0.59 0.64 0.77 0.76 0.71 0.52 0.45 1.00 0.57 0.46 0.37 0.53 0.28
Gen 0.41 0.42 0.62 0.54 0.75 0.71 0.31 0.58 0.59 0.76 0.77 0.73 0.52 0.43 1.00 0.62 0.45 0.33 0.48 0.30
Tes 0.90 0.32 0.87 0.89 0.96 0.35 0.38 0.04 0.69 0.68 0.83 0.43 0.48 0.81 1.00 0.55 0.49 0.91 0.95 0.63
Obs 16 0.34 0.39 0.49 0.34 0.64 0.60 0.64 0.30 0.41 0.50 0.62 0.74 0.53 0.56 0.57 1.00 0.58 0.40 0.43 0.28
Gen 0.36 0.35 0.48 0.36 0.65 0.63 0.59 0.39 0.46 0.54 0.64 0.75 0.55 0.49 0.62 1.00 0.52 0.38 0.47 0.23
Tes 0.57 0.08 0.53 0.16 0.37 0.91 0.27 0.25 0.34 0.33 0.43 0.96 0.91 0.69 0.55 1.00 0.65 0.66 0.51 0.97
Obs 17 0.33 0.46 0.45 0.31 0.44 0.37 0.80 0.22 0.32 0.41 0.41 0.52 0.76 0.83 0.46 0.58 1.00 0.75 0.33 0.67
Gen 0.31 0.45 0.46 0.26 0.42 0.32 0.77 0.25 0.33 0.40 0.37 0.49 0.73 0.80 0.45 0.52 1.00 0.73 0.30 0.66
Tes 0.74 0.60 0.79 0.21 0.48 0.83 0.56 0.83 0.30 0.59 0.49 0.78 0.55 0.53 0.49 0.65 1.00 0.67 0.46 0.68
Obs 18 0.20 0.31 0.30 0.41 0.37 0.33 0.52 0.22 0.34 0.38 0.35 0.36 0.54 0.59 0.37 0.40 0.75 1.00 0.36 0.72
Gen 0.22 0.30 0.32 0.42 0.38 0.31 0.48 0.28 0.37 0.38 0.32 0.34 0.54 0.58 0.33 0.38 0.73 1.00 0.36 0.71
Tes 0.91 0.43 0.85 0.67 0.83 0.51 0.56 0.20 0.39 0.60 0.88 0.59 0.58 0.95 0.91 0.66 0.67 1.00 0.96 0.69
Obs 19 0.27 0.29 0.37 0.42 0.50 0.55 0.35 0.38 0.46 0.48 0.49 0.53 0.29 0.22 0.53 0.43 0.33 0.36 1.00 0.31
Gen 0.29 0.23 0.33 0.41 0.49 0.55 0.40 0.44 0.52 0.48 0.48 0.52 0.28 0.25 0.48 0.47 0.30 0.36 1.00 0.29
Tes 0.84 0.41 0.77 0.79 0.90 0.29 0.54 0.00 0.45 0.63 0.93 0.40 0.49 0.92 0.95 0.51 0.46 0.96 1.00 0.57
Obs 20 0.43 0.37 0.54 0.40 0.46 0.20 0.57 0.09 0.15 0.24 0.19 0.29 0.47 0.52 0.28 0.28 0.67 0.72 0.31 1.00
Gen 0.43 0.37 0.59 0.44 0.47 0.19 0.54 0.16 0.18 0.27 0.21 0.30 0.47 0.48 0.30 0.23 0.66 0.71 0.29 1.00
Tes 0.60 0.23 0.59 0.28 0.51 0.89 0.39 0.31 0.50 0.54 0.54 0.94 0.95 0.69 0.63 0.97 0.68 0.69 0.57 1.00
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